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The design of an active noise control system involves several steps. One of the most
important is to find the best locations of the control sources and error sensors according
to the primary source distribution and its spectrum. Thus the first step in this optimization
problem is to obtain an analytical expression for the primary sound field. In this work this
was done by using a spherical harmonics expansion, determined on the basis of
measurements of the primary field. It is shown how, by using such an expansion, a method
can be developed for optimizing the transducer locations for the case of free field radiation
of a period general primary source. Finally it is shown how this measurement database can
be used to choose a good compromise between the number and the locations of the error
sensors.
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1. INTRODUCTION

The inherent constraints in designing an active noise control system are numerous. In
practice, one has to decrease significantly the noise emitted by any primary source by using
a few suitably placed actuators and sensors. Furthermore, the number and strengths of
the control sources must not be prohibitive. Hence one needs to compromise between what
is efficient and what is realistic. In addition, the spectral complexity of some noise sources
adds further problems. Moreover, it is very difficult to optimize transducer locations in
a general case. The focus in this paper is on the case of a harmonic stationary primary
source radiating in a free field. An electric transformer is a good example of such a source
but other industrial acoustic sources (compressor, fan noise, etc.) with well-defined spectral
components can be dealt with by the method proposed. Many active control experiments
have been done on this source type. The studies of Conover and Ringlee [1] on a 150 MVA
transformer gave good results, but in restricted directions. With three loudspeakers and
three microphones, Kido and Onoda [2] achieved a 25 dB reduction of the 100 Hz
component in certain directions, but an increase in sound level elsewhere. Ross conducted
experiments in situ with only one loudspeaker [3]. By displacing the loudspeaker and
estimating the efficiency at many points of a room 20 m away, he found that the lowest
frequency (100 Hz) was uniformly and efficiently controlled (10–20 dB), while the highest
harmonics were less and only locally controlled. He concluded that this very simple system
gives significant noise reduction, but that the number of loudspeakers should be increased.
Other work done with different control sources [4, 5] gave either good results only in
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certain directions or an omnidirectional reduction, but at the price of too many control
sources. The theoretical approaches of active noise control in free field are multifarious.
Nelson and Elliott [6, 7] used a global approach by minimizing the total power output of
a set of primary and secondary point sources. Kempton [8] developed the primary field
of a point source in a Taylor series, which led him to use a set of multi-polar sources as
secondary sources located at a distance d from the primary source. The approach used here
resembles that of Kempton. This method, first developed by Filippi and Piraux [9–11],
consists of noise source modelling by a spherical harmonics expansion. Some advantages
in using the spherical harmonics expansion over Kempton’s approach are that there are
fewer less series terms (cf., [12]), and that decomposition of any primary field can be done,
whereas Kempton’s technique is for a point source.

In what follows, this method is used to determine the number and the positions of the
control sources at different points. The next step is to use the previously defined control
source distribution to minimize the sum of the squared pressures at a number of error
sensors and to decrease progressively the number of sensors.

2. ACOUSTIC FIELD IDENTIFICATION BY MEANS OF SPHERICAL HARMONICS
FUNCTIONS

Many studies [9–11] have shown that the acoustic field radiated by a source can be
accurately approximated by using a representation in the form of a finite sum of spherical
harmonics functions. The aim of this study was to apply this method to active noise
control. By limiting the truncation order of the mathematical models used and by
identifying each term of the series as due to a particular multipolar-type source [7, 12, 13],
one may design an easy-to-implement system because of the limited number of elements.

2.1.     

Consider a sound source occupying a volume V, radiating in free field. With a harmonic
time dependence (e−ivt), and outside V, the sound pressure at point M satisfies

6(D+ k2)p(M)=0
Sommerfeld conditions7.

Let (R, u, f) be the spherical co-ordinates of point M in spherical co-ordinate system
of origin O. Let S be the smallest sphere centered at O containing V. Outside S, p(M)
can be expanded into a spherical harmonics series as

p(M)= s
a

n=0

hn (kR) s
n

m=0

AnmPm
n (cos u) cos mf

+ s
a

n=1

hn (kR) s
n

m=0

BnmPm
n (cos u) sin mf, (1)

where hn (kR) is the spherical Hankel function of the first kind corresponding to outgoing
waves, and Pm

n (z) is the Legendre function of degree n and order m.
More generally, one can consider a set of points Oj and spheres Sj centered at these

points and containing V. With (Rj , uj , fj ) as the co-ordinates of point M in the co-ordinate
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system centered at Oj , one sees [9, 11] that outside any closed surface containing all the
spheres Sj , p(M) can be expanded as

p(M)= s
nc

j=1 $ s
a

n=0

hn (kRj ) s
n

m=0

Aj
nmPm

n (cos uj ) cos mfj

+ s
a

n=1

hn (kRj ) s
n

m=1

Bj
nmPm

n (cos uj ) sin mfj%, (2)

where nc is the number of acoustical centers Oj .
Suppose that the pressure P	 (Mi ) is known at N points surrounding the source. By

establishing a mathematical representation of the sound pressure p(Mi ) at these points, one
can determine the representation parameters by a least squares method. With each model
one can associate the following minimization problem:

Find the parameters Aj
nm and Bj

nm such that the functional

J= s
N

i=1

=P(Mi )−P	 (Mi ) =2 is minimum
h
G

G

J

j
. (3)

For a single center O, P(Mi ) is the series (1) truncated at the selected order, or the series
(2) for several centers Oj (j=1, . . . , nc ). In the latter case, one has to define a set of integers
Nj representing the truncation order of each series associated with the center Oj .
(Rij , uij , fij ) are the co-ordinates of each point Mi in the co-ordinate system centered at Oj .
The resolution of problem (3) is standard. The coefficients Aj

nm and Bj
nm are the solutions

of the linear system

YA=P	 , (4)

where P	 is the vector (size N) of pressure values on each point Mi , A is the vector of
coefficients to be determined, of size Na , depending on the truncation order and number
of centers Oj , and Y is the matrix of spherical harmonics of functions associated with each
coefficient and computed for each point, its size being (N×Na ). The least squares solution
of this system is unique if NeNa ; its expression is

A=[Y*Y]−1Y*P	 . (5)

For a limited truncation order, Nj =2, say, there are nine terms in the expansion, and as
a result Na =9× nc .

Figure 1. Standard multi-poles: (a) dipole oriented in the (Ox) direction; (b) lateral quadrupole in the (yOz)
plane.
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Figure 2. Multi-polar sources associated with the spherical harmonics series terms: (a) n=2, m=0 (A20); (b)
n=2, m=2 (A22).

2.2.       -

It is known [12, 13] that each term in the series (1) or (2) can be identified as the radiation
of a multi-polar-type source. However, two terms, A20 and A22, do not correspond to a
standard multi-polar source (monopole, dipole, longitudinal and lateral quadrupole, some
of which are presented in Figure 1). The spatial arrangement and the strengths of these
two particular sources are described in Figure 2. The identification of each term of the
spherical harmonics series is summarized in Table 1, and the corresponding strength q is
given.

In the low frequency range, each multipole can be represented by a set of point sources
arranged as in Figures 1 and 2 with o small with respect to the wavelength. The pressure
at each point M from each monopole is

p(M)=−ikrcq eikr/4pr. (6)

When all the terms of series (2) are overlaid, several point sources are superposed. For
example, the dipole oriented in the (Oz) direction is composed of two monopoles of
strength 2q, the multi-pole of Figure 2(a) is composed of three monopoles, the extremes
of strength 2q of which are superposed with the dipole ones. The arrangement shown in
Figure 3 was obtained after computing all the strengths, and their sums in certain cases.
For a truncation order at n=2 of the spherical harmonics series, 19 monopolar sources
are needed to reproduce the primary field. With n=1, the number of sources decreases
to seven (numbered 1–7 in Figure 3).

T 1

Examples of equivalent multipoles for nE 2

Anm , Bnm Equivalent multi-poles Strength q

A00 Monopole k0A00

A10 Dipole oriented in (Oz) direction k1A10

A11 Dipole (Ox) k1A11

B11 Dipole (Oy) k1B11

A20 Multi-pole, Figure 2(a) q= k2A20/2
Q=(k2 − k0/2)A20

A21 Lateral quadrupole (xOz) k2A21/4
B21 Lateral quadrupole (yOz) k2B21/4
A22 Multipole, Figure 2(b) k2A22

B22 Lateral quadrupole (xOy) k2B22/2
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Figure 3. Spatial distribution of the control sources in the general case (nine coefficients Anm , Bnm), n=2; one
acoustical center in point 2.

2.3.   

After determination of the complex magnitude of the different monopoles (see Figure 3),
the type of active noise control system to choose becomes obvious. One has to replace each
monopole by a source of opposite strength. The spatial minimization will depend closely
on the accuracy of the primary field representation by series (1) and (2). One thus sees the
important role, in the representation’s accuracy, of the location chosen for the acoustical
center(s) with regard to the geometrical position of the primary source. In references [9, 11],
the authors chose acoustical centers near the physical center of the primary sources.
Consequently, they obtained good results. For an active control application a further
constraint exists: secondary sources cannot be located in the close vicinity of the primary
source. Technological constraints (extended primary source, hooding, high temperature,
etc.) force one to shift these secondary sources. Thus, the aim of this study was to verify
if the spherical harmonics method can be applied for long distances between the primary
source and the acoustical center.

In summary, the global approach to determine the best adapted control system for a
given primary source is the following: (1) measure at many points of the acoustic field
radiated by the primary source in free field; (2) choose one or several acoustical centers
where the secondary sources could be placed, taking into account the physical constraints
of the problem (use of optimization procedures if necessary [11]); (3) determine the
coefficients of the spherical harmonics expansion of the primary field with these acoustical
centers; (4) compute the strengths of the real monopoles associated with each coefficient;
(5) combine the different monopoles and assign them an opposite phase.

2.4.  

2.4.1. Description of the method
The method was used to simulate the active control of a primary field for the three

following cases of sources: a monopole of unit strength located at the origin O; a dipole
oriented in the (Ox) direction of unit moment located at the origin; a complex source
composed of five monopoles (an example from reference [14]), the positions and strengths
of which are as follows:

Position Strength
ZXXXXXXXXXCXXXXXXXXXV ZXXCXXV

x y z q

0 0 0·201 2+2i
−0·201 −0·201 0·101 3+ i
−0·201 0·201 0·01 3+ i

0·2 0·1 0·1 1+ i
0·3 −0·3 −0·2 2− i
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The simulation steps are as follows.

1. The measurement of P	 (Mi ) is simulated by computing the radiation of the primary
sources on N=210 points located on the hemisphere of radius three meters and centered
at O (see Figure 4). This choice corresponds to the real antenna of microphones which
will be used for future experiments (cf., section 4). The spatial distribution of these
points is

fi =(p/15)(i−1), i=1, 2, . . . , 30, ui =(p/15)(i−1/2), i=1, 2, . . . , 7.

2. Solve the minimization problem (3) for different numbers nc of acoustical centers,
different positions of these centers (cf., Figure 4), and different truncation orders
(0, 1 or 2).

3. Compute the strengths of the control sources associated with the spherical harmonics
expansion and simulate the secondary field Ps (Mi ) at the 210 measurement points.

4. Define a global reduction, GR, by

GR=10 log $ s
N

i=1

=Pp (Mi ) =2> s
N

i=1

=Pr (Mi ) =2%, (7)

where Pp (Mi ) is the primary sound pressure at point Mi , Ps (Mi ) is the secondary sound
pressure, and Pr (Mi )=Pp (Mi )+Ps (Mi ) is the residual sound pressure.

2.4.2. Influence of the distance between primary and secondary sources
First, it was attempted to assess the influence of the distance d between the primary

source at the origin and the center of the secondary sources on the (Ox) axis. For a
monopolar primary source, in Figure 5 is shown the reduction, GR, as a function of kd
(k is the wavenumber) for a spherical harmonics expansion truncated at orders 0, 1 and
2 to which correspond 1, 7 and 19 secondary sources, respectively. For two acoustical
centers located on the (Ox) axis at distance 2d from the origin, in Figure 6 is shown the
global reduction as a function kd for the three types of primary source and a truncation
order of 1. Note that, whatever the case, excluding the expansion truncated at order 0,

Figure 4. The geometrical arrangement.
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Figure 5. Global reduction as a function of kd: monopolar primary source, one acoustical center. Truncation
influence: ——, order 0; ......, order 1; – –, order2.

a global reduction is obtained of more than 10 dB for kdQ 1·8, which corresponds to a
100 Hz frequency and a one m distance d. Further consideration was given to this case
exclusively because it corresponds to a realistic practical application of active control of
the sound radiated by an electrical transformer. The results obtained for an expansion
truncated at order 0 and one acoustical center located at d, and two acoustical centers
located at 2d, respectively, are compared in Figure 7 with the theoretical maximum sound
power reduction obtained by Nelson [6] for the same configurations. We can see that there
is good agreement.

2.4.3. Influence of the number of secondary sources
An expansion truncated at order two for one acoustical center gives nine multi-polar

terms, and hence 19 monopolar secondary sources. This prohibits practical
implementation. Fortunately, the simulation shows that some terms are reduced to zero
or are negligible for certain primary sources or acoustical center positions. In Table 2 are
shown, for the three types of primary source, the strengths of the different multi-poles
obtained for one acoustical center located at 1 m and a 100 Hz frequency. For all the cases,
the first seven strengths of the secondary sources predominate. In Table 3 is given the
global reduction in decibels with respect to the number of multi-polar sources considered.

Figure 6. Global reduction as a function of kd: truncated expansion at order 1, two acoustical centers at 2d.
Influence on each primary source: ——, monopole; ......, dipole; – –, general source.
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Figure 7. Primary monopole, truncated expansion at order 0: ——, one acoustical center at d; – –, two acoustical
centers at 2d. Nelsons results: +, for one secondary monopole GR=−10 log (1−sin c2 kd) w, for two
secondary monopoles GR=−10 log (1−2 sin c2 kr/(1+ sin c 2kd)).

T 2

The magnitude at f=100 Hz of the expansion coefficients (Pa) and the
corresponding source strengths (m3 s−1): (a) primary monopole, center at
x=1; (b) primary dipole, center at x=1; (c) general primary source,

center at x=1

Magnitude (a) (b) (c)

A00 68·13 98·68 860·6
A10 36·52 125 663·8
A11 130·36 62·54 1429·4
B11 0 0 100·5
A20 63·53 124·4 952·5
A21 24·84 62·83 359·8
B21 0 0 16·4
A22 23·47 33·86 293·1
B22 0 0 22·9

Q1 6·21 6·69 75·08
Q2 12·9 23·72 191·96
Q3 3·1 6·8 41·37
Q4 4·64 6·7 57·53
Q5 4·64 6·7 58·6
Q6 5·96 11·28 88·65
Q7 6·63 13·44 100·33
Q8 1·23 3·11 17·81
Q9 1·23 3·11 17·81
Q10 1·23 3·11 17·81
Q11 1·23 3·11 17·81
Q12 0 0 2·27
Q13 0 0 2·27
Q14 0 0 2·27
Q15 0 0 2·27
Q16 0 0 0·81
Q17 0 0 0·81
Q18 0 0 0·81
Q19 0 0 0·81
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T 3

The global reduction (dB) for the three types of primary sources and
one acoustical center at x=1: (a) 19 sources; (b) seven sources; (c)

three sources

Primary source (a) (b) (c)

Monopolar 20·5 13 7
Dipolar 10·6 4 −0·5
General 19·2 11·5 5·7

Case (a) corresponds to nine terms and hence to 19 secondary sources, case (b) corresponds
to six terms A00, A10, A11, B11, A20, A22 and hence to seven secondary sources, and case (c)
corresponds to two terms A00 and A11 and hence to three sources aligned on the (Ox) axis.
The suppression of terms degrades the reduction, but in section 3 it is shown how to
improve these results by calculating, for a given number of sources, the strengths of these
sources by a least squares method, rather than by identification of the coefficients of the
truncated spherical harmonics series.

2.4.4. Influence of the number of acoustical centers
In Figure 6 it is shown that for two acoustical centers symmetrical with regard to the

origin, the reduction obtained is clearly better than for a single center. However, having
two centers doubles the number of secondary sources. Nevertheless, it was of interest to
verify if, for an approximately equivalent total number of sources, decomposing into many
centers provides better results. In Table 4 are shown the following three cases: (a) an
expansion truncated at order 2 with one center located 1 m from the primary source on
the (Ox) axis, and thus a maximum number of 19 sources; (b) an expansion truncated at
order 1 with two centers symmetrical with respect to the origin, at 1 m from the origin,
and thus 2×7 sources; (c) an expansion truncated at order 0 with nine centers surrounding
the primary source, their spherical co-ordinates being: (1, p/2, 0), (1, p/2, p/2), (1, p/2, p),
(1, p/2, 3p/2), (1, p/4, p/4), (1, p/4, 3p/4), (1, p/4, 5p/4), (1, p/4, 7p/4), (1, 0, 0).

Case (c), even though it contained only nine secondary sources, is comparable with cases
(a) and (b) because only 11 and 10 sources, respectively, of the 19 and 14 theoretical ones
of the two configurations had strengths which have to be taken into account. Case (b)
always gave better results than (a) and equivalent to (c). However, the expansion truncated
at order 1 with two centers symmetrical in respect to the primary source is more interesting
from a practical point of view. In fact, it seems technically preferable to arrange the
secondary sources into two groups on each side of the primary source rather than all
around it.

T 4

The global reduction (dB) with respect to the number of centers and
the truncation orders: (a) order 2, one center; (b) order 1, two centers;

(c) order 0, nine centers

Primary source (a) (b) (c)

Monopolar 20·5 27·4 29·3
Dipolar 10·6 39·8 20·7
General 19·2 26·8 30·6



.   . 586

Figure 8. Primary monopole, two acoustical centers at d=21 m, truncated expansion at order 1, f=100 Hz.
——, Sound pressure level before control; – –, sound pressure level after control.

2.4.5. Spatial distribution of the minimized field
Here consideration is given to the spatial effect of the minimization in case (b): that is

to say, two acoustical centers at a distance of 21 m and a truncation order 1 for a primary
monopolar source. In Figure 8 are shown the primary and residual (after minimization)
sound pressure levels on points belonging to the circle of radius 3 m centered at O and
located in the u= p/2 plane. A reduction of more than 20 dB was obtained in all directions.
A similar result was observed when the primary and residual sound pressure levels were
represented at the 210 points of the antenna (see Figure 9). This result is not specific to
the points used for the primary field identification. In Figure 10 it is shown that on the
whole plane (xOy), except in the vicinity of the secondary sources, the reduction A(M)
computed by equation (8) on a regular mesh (Dx=Dy=0·5 m) was better than 20 dB.
In the figure are also indicated preferential directions where the reduction is close
to 50 dB:

A(M)=20 log [=Pp (M) =/=Pr (M) =]. (8)

Figure 9. The sound pressure level (a) before and (b) after control on the antenna points (same parameters
as Figure 8).
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Figure 10. Reduction of the sound level in the u= p/2 plane (same parameters as Figure 8).

3. MINIMIZATION OF THE MEAN SQUARE PRESSURE ON A MICROPHONE
NETWORK

The results of the method described in section 2 for the determination of the secondary
sources associated with a given primary field provide evidence as to the most advantageous
positions of these sources. The method gives a natural arrangement of secondary sources
to recompose the primary field and consequently to minimize it. However, the computation
of their strengths by this method, called SHM, which is based upon spherical harmonics
expansions, has two major disadvantages, as follows.

1. By truncating the series to a given order and retaining only some of the secondary
sources, the strength found is no longer optimal for the selected global reduction criterion.

2. Furthermore, one knows that all active control systems in which the strengths of the
secondary sources are predetermined and fixed will fail. The system must be adaptive so
as to free any given criterion from physical drifts. Moreover, most control algorithms use
least squares minimization of the squared pressure at a certain number of error sensors.

In addition, practical realization of multi-poles is not easy and needs fine adjustment.
It is easier to drive individual sources than multi-poles. In this section are considered the
simulation results obtained by computing the strengths of the secondary sources by a least
squares method (called LSM) for the primary sources used in section 2 and the secondary
source positions given by the SHM method.

3.1.  

Consider N points Mi at which one wants to reduce the acoustic field. Let Pp (Mi ) be
the primary field at these points. Let Sj be the secondary point sources of strengths qj

(j=1, . . . , S).
In active control, the total field at the points Mi is expressed by the vector form

Pt =Pp +HQ, (9)

where H is the matrix (N×S) of elements hij =−ikrc eikdij/4pdij , dij is the distance between
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source Sj and point Mi , PT
p =[Pp (M1)Pp (M2) · · · Pp (MN )], Ps =HQ is the secondary field,

and QT = [q1q2 · · · qS ]. The quantity to be minimized is

J= s
N

i=1

=Pt (Mi ) =2. (10)

The computation of Q is standard and leads to the solution

Qopt =−[H*H]−1H*Pp . (11)

3.2.  

3.2.1. Comparison between the SHM and LSM methods
Some of the geometrical configurations to which the SHM method had led were

considered and the strengths of the associated secondary sources were computed by using
formula (11), with N being the 210 antenna points. The results obtained correspond to a
reference solution which cannot be implemented but which serves as a reference for
comparison with feasible cases. Obviously, the results were highly improved with respect
to those obtained by computing the strength by summation of the magnitudes of the
different terms of the truncated spherical harmonics series. In Table 5 is shown the
reduction obtained by the two methods for the different types of primary sources defined
in section 2.4.1. and for different numbers of secondary sources. The modulus of the
highest strength for each preceding case is given in Table 6. The two tables lead to the
following comments: concentration of a lot of sources into one center gives completely
unrealistic strengths; distribution into two centers symmetrical with respect to the primary
source significantly improves the results; increasing the number of centers and decreasing
the number of sources at each center give very good results and realistic strengths; the
discrepancy observed between cases (b) and (c) of Tables 3 and 5 for identical
configurations is due to the truncation order, which is 2 and 1, respectively.

T 5

Global reduction (dB): (a) order 2, center at x=1 (19 sources); (b) order
1, center at x=1 (seven sources); (c) order 1, center at x=1 (three
sources); (d) order 1, centers at x=21 (2×7 sources); (e) order 1, centers

at x=21 (2×3 sources aligned on the Ox-axis)

Primary source
ZXXXXXXXXXXCXXXXXXXXXXV

Monopolar Dipolar General

(a) SHM 20·5 10·6 19·2
LSM 45·5 30·9 43·2

(b) SHM 9·8 4·1 9·3
LSM 18·7 9 17·4

(c) SHM 3·4 −1·5 2·4
LSM 17·9 8·2 16·3

(d) SHM 27·4 39·8 26·8
LSM 57·8 68·3 34

(e) SHM 23·7 38·5 17·8
LSM 54·9 67·6 25·2
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The maximum magnitude of the secondary sources (m3 s−1)

Primary source
ZXXXXXXXXXXCXXXXXXXXXXV

Monopolar Dipolar General

(a) SHM 12·9 23·7 192
LSM 2855·3 15 033 43 350

(b) SHM 1·7 1·7 20·8
LSM 534·7 1167·9 5251·8

(c) SHM 1·7 1·4 20·8
LSM 18·9 30·2 220·5

(d) SHM 0·8 0·8 9·6
LSM 27·7 2·5 1010

(e) SHM 0·8 0·8 9·6
LSM 3·4 3·4 41·3

Figure 11. The level (a) before and (b) after control at the antenna points: monopolar primary source,
f=100 Hz, two groups of three secondary sources at d=21 m from the primary source.

Figure 12. The same source configuration as Figure 11, f=100 Hz: ——, Level before control; – –, level after
control.
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Configuration (e) is very interesting from a practical point of view: it includes only six
secondary sources, the minimum reduction is 25 dB (for the complex primary source) and
the source strengths are realistic.

3.2.2. Spatial distribution
The same type of graphical representation as in section 2.4.5. is given for configuration

(e) and a monopolar primary source (see Figures 11–13).
As shown in Figure 13(a), a reduction of more than 40 dB was obtained on the whole

plane, with preferential directions where 80 dB is reached. Using these directions to
optimize the placement of a restricted number of error sensors will be described in the
following section. The influence of the frequency and the distance between primary and
secondary sources are shown in Figure 13(b). Note that the reduction was always better
than 20 dB for kdQ 3.

3.3.       

After one finds a compromise between the number of sources and the reduction
obtained, the next step is to decrease the number of error sensors. It is not always possible
to measure totally the acoustic field all around the primary source. Furthermore, for the
implementation of a real time control algorithm, the number of error sensors must be
limited, but it must remain greater than the number of secondary sources. It is thus

Figure 13. (a) Reduction in the u= p/2 plane. (b) Global reduction.
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important to establish what the preceding results become when the number of error sensors
is decreased from 210 to a few units. The difficulty is in choosing the positions of these
sensors. It is clear that these positions are directly linked with the objective sought. If the
aim is to execute a directional control, then the sensors are concentrated in the chosen
directions. On the other hand, if the initial objective is to provide a three-dimensional
control, the choice of the sensor positions become primary and delicate.

3.3.1. Proposed procedure
The optimization of the sensor positions can be treated in different ways. One can use

gradient methods or systematize a computation taking into account the different
combinations of N sensors among the first 210. However, such strategies are difficult to
implement in a three-dimensional problem. Computation times are long and the problems
are often non-convex. Without excluding these methods, in the first instance one can opt
for a simpler method based on an observation. During the simulations, it was observed
that, for the monopolar and dipolar primary sources, the minimization with N secondary
sources makes preferential directions for which the reduction is maximum appear in the
(xOy) plane (see Figure 13(a)). We have not yet completely studied this phenomenon, but
it nevertheless seems of interest to locate the error sensors in these directions. Snyder and
Hansen [15] observed the same thing for a vibrating panel radiation problem.

In summary, the following procedure is proposed: (1) solution of the minimization
problem (10) for N=210 and S secondary sources (called optimal control); (2)
computation and graphical representation of the residual sound pressure level (after
optimal control) on the circle of radius 3 m in the u= p/2 plane; (3) marking of the
co-ordinates of the NeS points of minimum residual level; (4) solution of equation (10)
for the N positions of sensors defined in step (3); (5) estimation of the efficiency of the
chosen configurations; (6) comparison of the secondary source strengths in the reference
case (N=210) and the feasible case (NeS).

3.3.2. Results
In Figure 14 is shown the residual level in the u= p/2 plane, 3 m away from the origin

Figure 14. The level after optimal control (210 sensors), primary monopole, same configuration as Figure 11.
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Global reduction (dB) and secondary source magnitude (m3 s−1)

210 sensors, six sensors,
GR=54·9 dB GR=53·7 dB

Q1 2·76 2·75
Q2 3·41 3·38
Q3 1·14 1·13
Q4 2·76 2·75
Q5 3·41 3·38
Q6 1·14 1·13

for the configuration (e) and a monopolar primary source. The symbols ‘‘w’’ mark the
points of minimum residual level. The minimization problem (10) was solved on the basis
of these points. In Table 7 the results obtained are compared with those of the reference
case with 210 points.

The global reduction and the secondary source strengths differed only slightly for
N=210 and N=6 sensors. Conversely, when the sensors were positioned on the basis
of the directions of minimum reduction, noise reduction was weaker. One now needs to
systematize the procedure and, in particular, find a rule to localize the directions of
maximum reduction in the general case. This would then constitute a simple method of
error sensor location.

4. CONCLUSION AND PERSPECTIVES

A procedure has been proposed which may improve the implementation of an active
control system of the noise radiated by sound sources in free field. Decomposing this sound
field on a spherical harmonics basis with one or several centers shifted from the geometrical
center of the source allows one to estimate the number and realistic arrangement of
secondary sources likely to minimize the primary field. After locating the secondary
sources, one uses a least squares method to compute their strengths. The simulations
showed a global reduction in the whole space at low frequencies even when long distances
separated the real acoustical center of the primary source and those of the secondary
sources. An interesting configuration of secondary sources has been made apparent,
constituted of 2×3 sources arranged symmetrically with respect to the primary source and
aligned along an axis passing through this source. Associated with six suitably placed error
sensors, the configuration gave very good results for the simulated monopolar and dipolar
primary sources. The theory of the geometrical arrangement of the directions of maximum
reduction should be further investigated.

An experimental implementation of the proposed method will soon be undertaken for
a mean voltage transformer. For this practical application a certain number of elements
still need to be studied: the influence of a reflecting ground; the influence of the diffraction
of secondary source radiation by an extended primary source; wind-provoked degradation
in the far field; degradation of the results when the primary source radiates in an enclosed
space rather than in free field.
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